

Intro. Of Chris and some highlights Al4Bl Workshop Part 2

Prof. Wen-Chih Peng
Dept. of Computer Science
National Ying Ming Chiao Tung University

Bio-Sketch - Wen-Chih Peng

- Ph.D., Department of Electrical Engineering, National Taiwan University
- Professional Experiences
 - Chairman of Dept. of Computer Science, NYCU (2019/8 2022/7)
 - Director of E-SUN-NCTU AI/Fintech Center (2019/8 now)
 - Vice Director of Digital Medicine Center (2021/2 2022/7)
 - Director of Institute of Multimedia Engineering (2016/8 2019/7)
 - Visiting professor at LARC, SMU, Signapore (2018/1 2018/2)
 - Visiting professor at ITEE, University of Queensland, Australia (2014/7-2015/7)
 - Visiting professor at CS of UIUC, USA (2009/7 2009/11)
- Research Interests
 - Data mining, Machine learning/Deep learning, Databases/Data management, Al

Honors and Awards

- Receipt of Y. Z. Hsu Scientific Paper Award (有庠科技論文獎) in the category of Artificial Intelligence, 2023.
- Receipt of Future Tech. MOST, 2021
 - Design and Implementation of Mining Purchasing Datasets for Purchasing Behavior Prediction and EDM Subject Generation
- Receipt of Outstanding professor of Electrical Engineering (Chinese Institute of Electrical Engineering), 2020
- Receipt of K. T. Li Breakthrough Award, Institute of Information & Computing Machinery, 2019 (李國鼎穿石獎)
- Receipt of MSRA Collaborative Research Grant Awards, 2018
 - Crowd-flow: Discovering and Inferring Crowd Transportation Modes via
 Cellular Data
- Receipt of Ta-You Wu Memorial Award, NSC (Taiwan), 2012
- Receipt of Outstanding Electrical Engineers (Chinese Institute of Electrical Engineering) 2011

Some Selected Projects (Led by Wen-Chih Peng)

Project titles	Time	Sponsors
Exploring Al in Fintech Services	2018-12 - Now	E-Sun Bank
Design and Implementation of Mining Multi- dimensional Fintech Cubes from Fintech Datasets	2017/6 - 2021/7	MOST
Next-Generation Smartphone: Intelligent User Behavior Sensing, Mining, and Visualization	2013/01 - 2014/12	hTC
Mining Application Usage Patterns on Smart Phones for Application Recommendation	2011/01 - 2011/12	hTC
Mining User Latent Intention from Browsing Trajectories for Recommendation in Mobile EC App	2013/01 - 2013/12	Yahoo

About Our Lab (2018-2024, >20 papers in AAAI/KDD/EMNLP/ICDE/CIKM)

Badminton Coach AI

Intent Detection

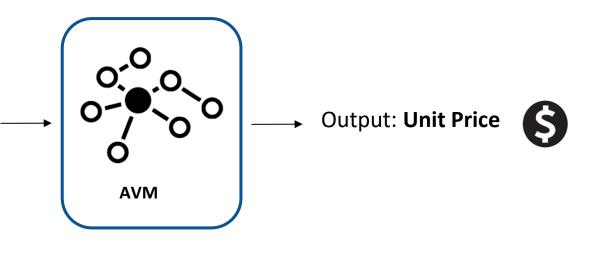
Real Estate Appraisal

Fake News Detection

- Al Detection and Causality
 Inferences for Fab Operations
 - Al Causality Inferences for TSMC Operations

Intelligent Medical Service System

FinTech - Real Estate Appraisal


Why do we need Real Estate Appraisal?

Real Estate Appraisal

Input

- Real Estate Transactions
 - o house size
 - o house floor
 - o house age
 - o city name/town name
 - 0 ...
- Point of Interest (Pol)
 - convenient store
 - o school
 - o supermarket

Previous AVMs for Real Estate Appraisal

Machine Learning-based Method

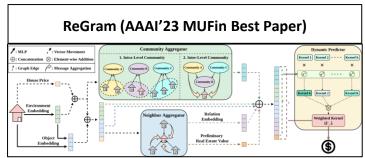
Linear Regression, Support Vector Regression, Boosted Regression Trees

Graph-based Method

MugRep (KDD 2021) [1], ReGram (AAAI 2023) [2]

^[1] Zhang, Weijia, et al. "MugRep: A Multi-Task Hierarchical Graph Representation Learning Framework for Real Estate Appraisal." SIGKDD. 2021.

^[2] Chih-Chia Li, Wei-Yao Wang, Wei-Wei Du, and Wen-Chih Peng. "Look Around! A Neighbor Relation Graph Learning Framework for Real Estate Appraisal." AAAI workshop 2023 and PAKDD 2024.


Research Direction

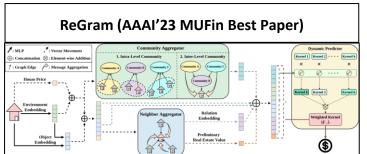
LightGBM

Microsoft, 2017

Using GNN to leverage neighbor samples for better accuracy and interpretability

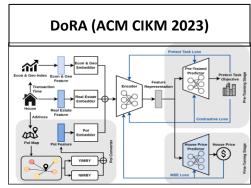
2022.Jul (Previous Goal)

Transformer-Based x SSL



Research Direction

2022.Jul (Previous Goal)



Transformer-Based x SSL

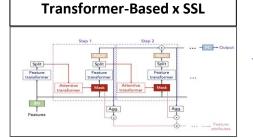
Combining Self-Supervised Learning and Few-Shot learning to improve model performance with sparse neighbor samples

2023.Mar

2022.Jul(Previous Goal)

Research Direction

LightGBM

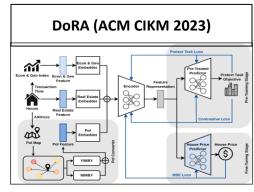

using GNN to leverage neighbors samples for better accuracy and interpretability

ReGram (AAAI'23 MUFin Best Paper)

| MILP | Vector Microsoma | Community Aggregator | Community Aggregator | Community Aggregator | Completing | Com

Integrate previously developed models to create a comprehensive

2023.Jun


2023.Ju

Combining SSL and Transformer to enhance model representation learning on tabular data

Combining Self-Supervised
Learning and Few-Shot
learning to improve model
performance with sparse
neighbor samples

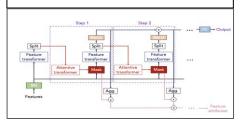
2023.Mar

2022.Jul(Previous Goal)

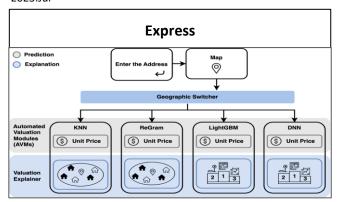
Research Direction

Light GRM

Using GNN to leverage neighbor samples for better accuracy and interpretability



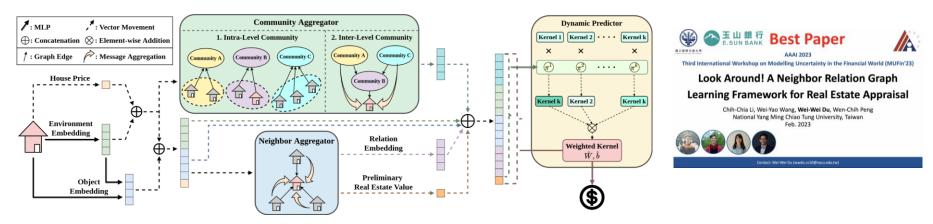
Integrate previously developed models to create a comprehensive


house valuation system

2023.Jun

Transformer-Based x SSL

2023.Jul


Combining **SSL** and **Transformer** to enhance model representation learning on tabular data Combining Self-Supervised Learning and Few-Shot learning to improve model performance with sparse neighbor samples

2023.Ma

Real Estate Appraisal

- Our paper is accepted by AAAI-23 MUFin workshop and the extended version is accepted by PAKDD 2024.
- Best Paper Award

Reference: Li, Chih-Chia, et al. Look Around! A Neighbor Relation Graph Learning Framework for Real Estate Appraisal 14

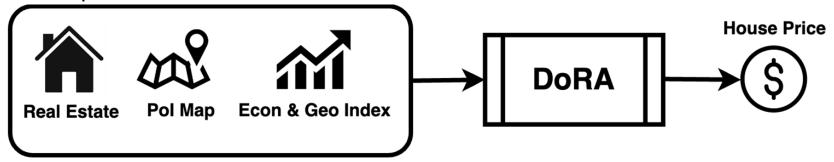
Previous AVMs for Real Estate Appraisal

 Performance are sensitive to the number of labeled data and cannot tackle with low-resource scenario

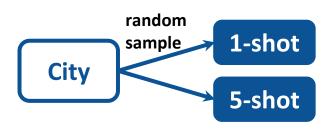
For graph-based method, what if there are no available neighbors?

Low-Resource Real Estate Appraisal

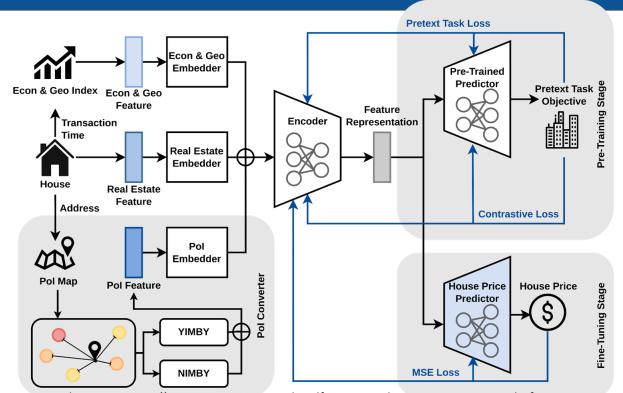
01. Rural Area


There are few neighbors in the area outside towns and cities.

02. New Developing Area


An urban planning or land readjustment area lacks historical records.

Problem Definition


- Input: Real Estate Features, Pol Features, Economic and Geographical Index
- Output: Unit Price \$

 Few-shot Setting: randomly sampled 1 and 5 shots for each city from the labeled training set as annotated examples

Proposed Framework: DoRA

Reference:

W.-W. Du. W.-Y. Wang, and W.-C. Peng, ``DoRA: Domain-Based Self-Supervised Learning Framework for Low-Resource Real Estate Appraisal," Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (ACM CIKM 2023), Birmingham United Kingdom, Oct. 21 - 25, 2023.

FinTech - Understand User Purchasing Know Your Customers

Previous Project - Understand User Purchasing

1. Off-Line Behavior Mining from Purchasing data

2. Collaborative Inspired Headline Generation

Reference:

Y.-T. Wen, P.-W. Yeh, W.-C. Peng and H.-H. Shuai, "Customer Purchase Behavior Prediction from Payment Datasets," Proceedings of the 11th ACM International Conference on Web Search and Data Mining (ACM WSDM), Los Angeles, California, USA, Feb. 6-8, 2018.

Y.-H. Chen, P.-Y. Chen, H.-H. Shuai, and W.-C. Peng, "TemPEST: Soft Template-based Personalized EDM Subject Generation Through Collaborative Summarization," Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), 2020.

Yu Ting Wen, Hui-Kuo Yang, Wen-Chih Peng, "Mining Willing-to-Pay Behavior Patterns from Payment Datasets.," ACM Trans. on Intelligent Systems and Technology, 2022.

Payment Datasets

Payment record

- Time
- Category
- Store/Places
- Amount
- Rewards

Mining Purchasing Behavior of Users

Step 1 User Profiling

Understand the customer by profiling the time, location, category, payment information Where:

Location

Step 2 Next Step Prediction (Where, What, How much)

Propose a **probabilistic graphical model** that explores credit card's characteristics to predict the next step (location, category, payment) of customers

Reference:

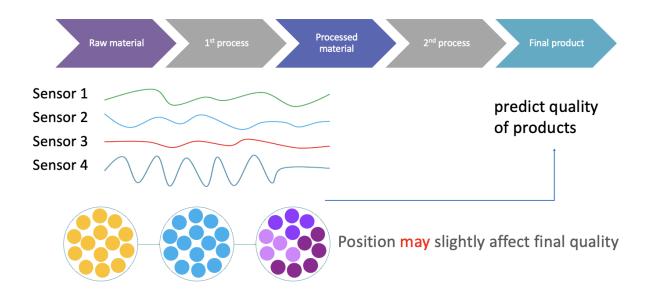
Y.-T. Wen, P.-W. Yeh, W.-C. Peng and H.-H. Shuai, "Customer Purchase Behavior Prediction from Payment Datasets," Proceedings of the 11th ACM International Conference on Web Search and Data Mining (ACM WSDM), Los Angeles, California, USA, Feb. 6-8, 2018.

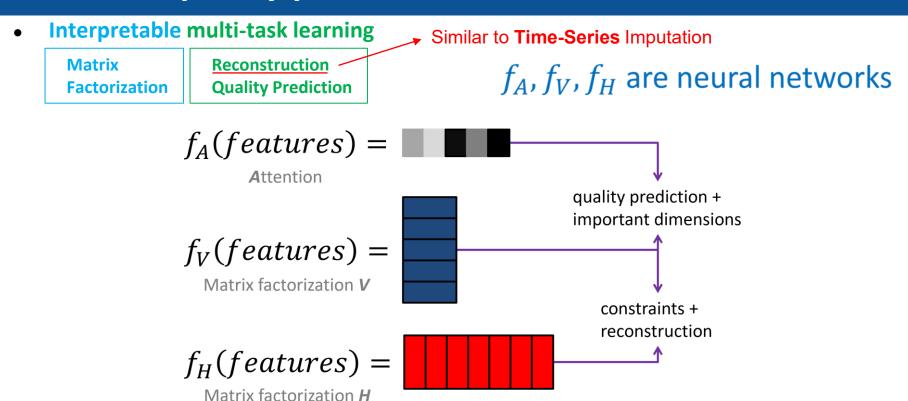
Yu Ting Wen, Hui-Kuo Yang, Wen-Chih Peng, "Mining Willing-to-Pay Behavior Patterns from Payment Datasets.," ACM Trans. on Intelligent Systems and Technology, 2022.

Al for Industry Applications

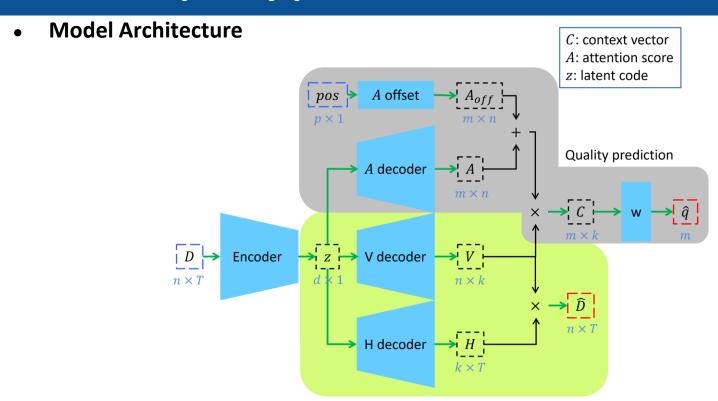
Previous Projects-related to industries

- Anomaly detection in manufacturing datasets
- Product quality prediction
- Root cause analysis in microservices



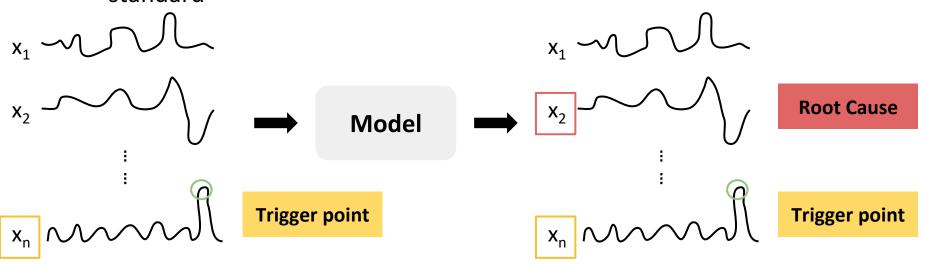

Product quality prediction

- Early stage quality prediction
- Interpretable model and intermediate output

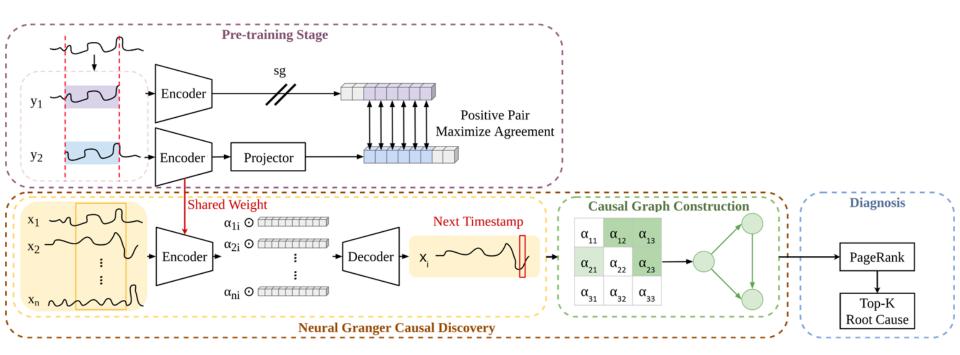

C.-H. Yen, Y.-C. Fan and W.-C. Peng, `Interpretable Multi-Task Learning for Product Quality Prediction with Attention Mechanism," Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE), Macau SAR, China, April 8-12, 2019.
H.-Y. Chih, Y.-C. Fan, W.-C. Peng and H.-Y. Kuo, "Product Quality Prediction with Convolutional Encoder-Decoder Architecture and Transfer Learning," Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Oct.19-23, 2020.

Product quality prediction

C.-H. Yen, Y.-C. Fan and W.-C. Peng, 'Interpretable Multi-Task Learning for Product Quality Prediction with Attention Mechanism," Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE), Macau SAR, China, April 8-12, 2019.

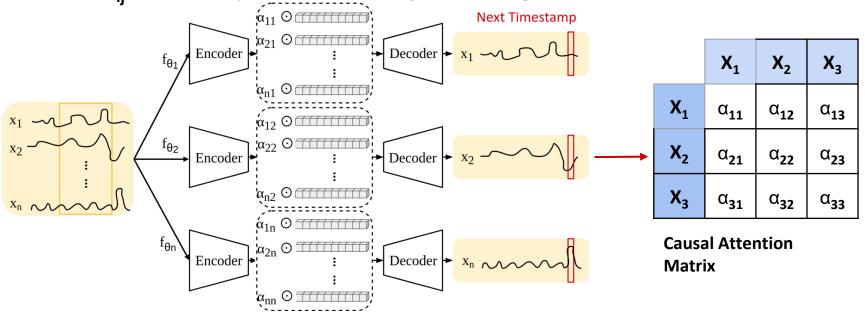

Product quality prediction

Reconstruction

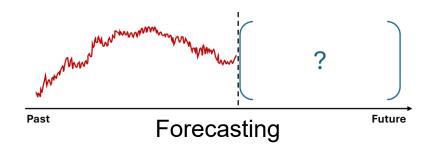

Root cause analysis

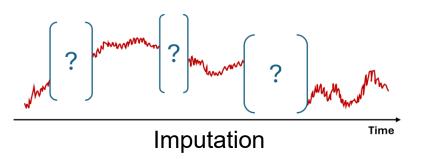
- Find the root causes of trigger point based on multivariate time series
 - Trigger point: the value of the variable is found to deviate from the standard

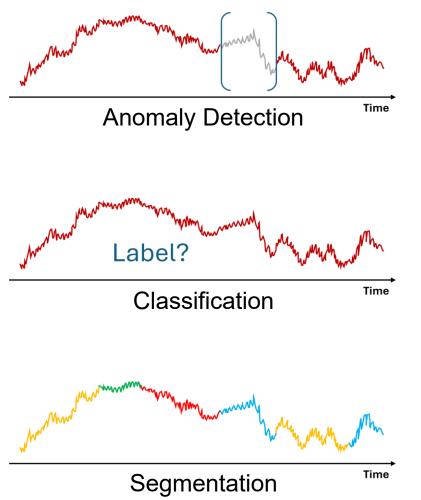
Root cause analysis


Framework

C.-M. Lin, C.-Chang, W.-Y. Wang, K.-D. Wang and <u>W.-C. Peng</u>, `` Root Cause Analysis In Microservice Using Neural Granger Causal Disocvery," *Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI)*, 2024.

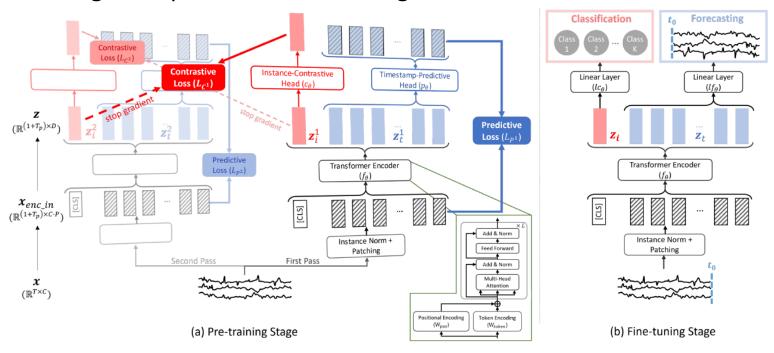

Root cause analysis – <u>Time-Series Forecasting</u>


- There are N independent neural networks with the same architecture
 - α_{ii} : i is the input time series, j is the target time series

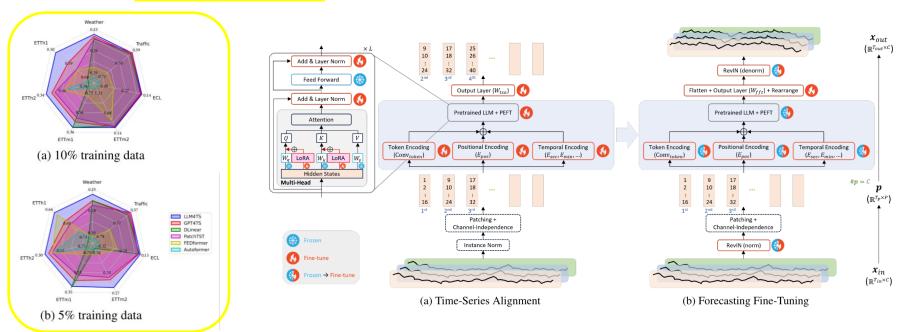


C.-M. Lin, C.-Chang, W.-Y. Wang, K.-D. Wang and <u>W.-C. Peng</u>, `` Root Cause Analysis In Microservice Using Neural Granger Causal Disocvery," *Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI)*, 2024.

Time-Series Analysis



Self-supervised Learning with Time-Series


Disentangled Representation Learning

Ching Chang, Chiao-Tung Chan, Wei-Yao Wang, Wen-Chih Peng, Tien-Fu Chen, "TimeDRL: Disentangled Representation Learning for Multivariate Time-Series", ICDE 2024

Leverage LLMs in Time-Series Forecasting

Strong few-shot learning capability

Explain AI in simple terms

Al, or Artificial Intelligence, refers to the ability of computers or machines to perform tasks that typically require human intelligence, such as understanding language, recognizing images, making decisions, and solving problems. This is achieved by training algorithms on large amounts of data and adjusting their parameters so that they can learn to perform these tasks with a high level of accuracy. There are many different types of Al, including supervised learning, unsupervised learning, and reinforcement learning, each with its own strengths and weaknesses. Overall, the goal of Al is to create systems that can perform tasks with human-like or even superhuman intelligence.

Behaving /Acting

Reasoning

Learning

Sensing and Collecting Behavior and environmental data

